Applications

ABCDEFGHIJKLM
NOPQRSTUVWXYZALL

Advanced Neural Cell Culture

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function.

Learn More
Print
Description Available Resources

Advanced Neural Cell Culture

Discovery, Regenerative Medicine, Toxicity

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function. CDI’s neurons are amenable to these culture techniques as pure cell populations or in co-culture with other cell types, such as CDI’s astrocytes.

  1. Carlson C, Wang J, et al. (2014) Characterization of an Isogenic Disease Model of Alzheimer’s Disease from Human iPSC-derived Neurons. Poster Presentation, Society for Neuroscience.
  2. DeLaura S, Fluri DA, et al. (2014) Human Neural Microtissues Derived from Induced Pluripotent Stem Cells for Toxicity Testing. Poster Presentation, Society for Neuroscience.

Genetic Manipulation of Neurons

The ability to interrogate and monitor gene expression is critical to understanding biological pathways that underlie normal and pathogenic cellular function.

Learn More
Print
Description Available Resources

Genetic Manipulation of Neurons

Discovery, Regenerative Medicine, Toxicity

The ability to interrogate and monitor gene expression is critical to understanding biological pathways that underlie normal and pathogenic cellular function. CDI’s neurons and dopaneurons are amenable to various genetic manipulation techniques including:

  • Transfection
  • Transduction
  • siRNA
  • Reporter vector expression

Monitoring Neurotoxicity

Measurements of cell health are a fundamental component of any disease research and drug development effort.

Learn More
Print
Description Available Resources

Monitoring Neurotoxicity

Discovery, Toxicity

Measurements of cell health are a fundamental component of any disease research and drug development effort. Cell health endpoints represent various biological processes including cell morphology, viability, cytotoxicity, apoptosis, and mitochondrial integrity. In drug development, researchers interrogate these endpoints as part of discovery screening efforts and toxicity studies. CDI’s neurons, dopaneurons, and astrocytes have been utilized to measure various neural cell health endpoints using platforms including:

Measuring Neurite Outgrowth

During development, neurons become assembled into functional networks by growing axons and dendrites that connect synaptically to other neurons.

Learn More
Print
Description Available Resources

Measuring Neurite Outgrowth

Discovery, Toxicity

During development, neurons become assembled into functional networks by growing axons and dendrites that connect synaptically to other neurons. Understanding this process of neurite outgrowth is a major focus of neuroscience research and central to drug discovery efforts in neurodegenerative disease and neurotoxicity studies. CDI’s neurons rapidly form complex cell networks and are an ideal model for assessing neurite outgrowth enhancement, inhibition, and protection with target compounds. These changes can be measured using platforms including:

High Content Analysis:

  1. Assessing Neurite Outgrowth: Quantification with High Content Screening. Cellular Dynamics Application Protocol.
  2. Sherman SP and Bang AG. (2014) High Content Screen for Compounds That Modulate Neurite Outgrowth and Retraction Using Human Induced Pluripotent Stem Cell-derived Neurons. Poster Presentation, ISSCR.
  3. High-content Screening of Neuronal Toxicity Using iPSC-derived Human Neurons. Molecular Devices Application Note.

Plate-based Fluorescence & Luminescence Assays:

  1. Immunofluorescent Labeling. Cellular Dynamics Application Protocol.

Label-free Analysis:

  1. Alcantara S, Garay P, et al. (2014) Development of 96/384-well Kinetic Neurite Outgrowth/Stabilisation Assays in Human iPSC-derived Neurons Using Long Term Live Cell Imaging. Poster Presentation, FENS.

Measuring Neuronal Synaptic Activity

The measurement of neuronal synaptic activity can be accomplished through various signaling pathways.

Learn More
Print
Description Available Resources

Measuring Neuronal Synaptic Activity

Discovery, Toxicity

The measurement of neuronal synaptic activity can be accomplished through various signaling pathways. These pathways can be measured in CDI’s neurons and dopaneurons using platforms including:

Measuring Neuronal Electrophysiology

The communication between neurons and between neurons and other cell types is accomplished through electrical signals.

Learn More
Print
Description Available Resources

Measuring Neuronal Electrophysiology

Discovery, Regenerative Medicine, Toxicity

The communication between neurons and between neurons and other cell types is accomplished through electrical signals. CDI’s neurons exhibit biologically relevant electrical functions typical of primary human cortical neurons including evoked and spontaneous action potentials, inhibitory and excitatory post-synaptic currents, and ion channel pharmacology. These responses can be measured using platforms including:

Modeling Botulinum Neurotoxin Infection

CDI's neurons provide a functionally relevant human model to measure Clostridium botulinum neurotoxin (BoNT) activity.

Learn More
Print
Description Available Resources

Modeling Botulinum Neurotoxin Infection

Discovery, Disease Modeling, Toxicity

CDI’s neurons provide a functionally relevant human model to measure Clostridium botulinum neurotoxin (BoNT) activity. Compared with primary rat spinal cord cells, CDI’s neurons showed equal or increased sensitivity, improved dose-response, and more complete SNARE protein cleavage in response to BoNT treatment. CDI’s neurons are rapidly being adopted by researchers to study mechanisms of BoNT toxicity and by BoNT manufacturers to replace an expensive and labor-intensive mouse bioassay for potency testing.