Applications

ABCDEFGHIJKLM
NOPQRSTUVWXYZALL

Advanced Cardiomyocyte Cell Culture

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function.

Learn More
Print
Description Available Resources

Advanced Cardiomyocyte Cell Culture

Discovery, Regenerative Medicine, Toxicity

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function. CDI’s cardiomyocytes are amenable to these culture techniques as pure cell populations or in co-culture with other cell types, such as CDI’s iCell Endothelial Cells.

  1. Carlson C, Einhorn S, et al. (2013) Applications Development at CDI: Improving Workflows, Pushing Biology, and Enabling Screening. Poster Presentation, Cellular Dynamics User Group Meeting.
  2. Rao C, Prodromakis T, et al. (2013)  The Effect of Microgrooved Culture Substrates on Calcium Cycling of Cardiac Myocytes Derived from Human Induced Pluripotent Stem Cells. Biomaterials 34(10):2399-411.
  3. iCell Cardiomyocytes – iCell Endothelial Cells Co-culture. Contact Technical Support for more information.

Advanced Neural Cell Culture

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function.

Learn More
Print
Description Available Resources

Advanced Neural Cell Culture

Discovery, Regenerative Medicine, Toxicity

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function. CDI’s neurons are amenable to these culture techniques as pure cell populations or in co-culture with other cell types, such as CDI’s astrocytes.

  1. Carlson C, Wang J, et al. (2014) Characterization of an Isogenic Disease Model of Alzheimer’s Disease from Human iPSC-derived Neurons. Poster Presentation, Society for Neuroscience.
  2. DeLaura S, Fluri DA, et al. (2014) Human Neural Microtissues Derived from Induced Pluripotent Stem Cells for Toxicity Testing. Poster Presentation, Society for Neuroscience.

Advanced Hepatocyte Cell Culture

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function.

Learn More
Print
Description Available Resources

Advanced Hepatocyte Cell Culture

Discovery, Regenerative Medicine, Toxicity

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function. CDI’s hepatocytes are amenable to these culture techniques as pure cell populations or in co-culture with other CDI cell types.