Applications

ABCDEFGHIJKLM
NOPQRSTUVWXYZALL

Modeling Hepatitis Infection

Hepatitis infection mediated by HCV and HBV is a common cause of liver disease and failure.

Learn More
Print
Description Available Resources

Modeling Hepatitis Infection

Discovery, Disease Modeling

Hepatitis infection mediated by HCV and HBV is a common cause of liver disease and failure. Developing effective therapies for hepatitis has been limited due to the lack of physiologically relevant human disease models. CDI’s hepatocytes express hepatitis receptors (SR-B1, CD91, occludin, claudin-1), which support uptake and replication of clinically relevant hepatitis virus genotypes. These hepatocytes are being used in large-scale screens for novel therapeutic candidates. CDI offers hepatocytes from multiple donors including one with an IFNL4 function that does not readily clear HCV infection.

Measuring Drug Metabolism

Drug metabolism is a key function of the human liver and is largely accomplished via the activity of P450 cytochromes and other enzymes within hepatocytes.

Learn More
Print
Description Available Resources

Measuring Drug Metabolism

Toxicity

Drug metabolism is a key function of the human liver and is largely accomplished via the activity of P450 cytochromes and other enzymes within hepatocytes. Understanding drug metabolism pathways is critical to defining the availability of therapeutic agents and identifying toxic metabolites. CDI’s hepatocytes exhibit P450 activity that is sustained for over 7 days in culture. In addition, functional P450 induction in response to known inducers has been demonstrated.

  1. P450-Glo Assays. Promega Technical Bulletin.

Monitoring Hepatotoxicity

Unforeseen liver toxicity is a primary mode of clinical failure for drugs in development.

Learn More
Print
Description Available Resources

Monitoring Hepatotoxicity

Toxicity

Unforeseen liver toxicity is a primary mode of clinical failure for drugs in development. The long-term stability of CDI’s hepatocytes in culture affords the opportunity to perform repeat dosing at physiologically relevant concentrations to aid in the identification of drug toxicity. Specific mechanisms of hepatotoxicity, such as cell viability, mitochondrial toxicity, and phospholipidosis, can be measured using platforms including:

  1. Sirenko O, Hesley J, et al. (2014) High-content Assays for Hepatotoxicity Using Induced Pluripotent Stem Cell-derived Cells. Assay Drug Dev Technol 12(1):43-54.
  2. Berger DR, Ware BR, et al. (2014) Enhancing the Functional Maturity of iPSC-derived Human Hepatocytes via Controlled Presentation of Cell-Cell Interactions In Vitro. Hepatology 61(4):1370-81.
  3. Einhorn S, Lu J, et al. (2013) Detection of Xenobiotic-induced Hepatotoxicity in Human iPSC-derived Hepatocytes. Poster Presentation, ISSX.
  4. Lu J, Metushi I, et al. (2013) Investigation of Isoniazid DILI Mechanisms in Human Induced Pluripotent Stem Cell Derived Hepatocytes. Poster Presentation, ISSX.
  5. Einhorn S, Salvagiotto G, et al. (2013) Characterization and Function of iPSC derived Hepatocytes for Use in Toxicity. Poster Presentation, SOT.
  6. Mann DA. (2014) Human Induced Pluripotent Stem Cell-derived Hepatocytes for Toxicology Testing. Exp Opin Drug Metab & Toxicol 11(1):1-5.