Applications

ABCDEFGHIJKLM
NOPQRSTUVWXYZALL

Modeling Cardiac Hypertrophy

Cardiac hypertrophy can occur in response to various pathological stimuli and is characterized by cellular changes including reactivation of the fetal gene program, increases in cellular volume...

Learn More
Print
Description Available Resources

Modeling Cardiac Hypertrophy

Discovery, Disease Modeling

Cardiac hypertrophy can occur in response to various pathological stimuli and is characterized by cellular changes including reactivation of the fetal gene program, increases in cellular volume, and reorganization of the cytoskeleton. Using CDI’s cardiomyocytes, researchers can induce the hypertrophic condition in vitro using stimuli, such as endothelin-1, and measured by phenotypic endpoints including:

  • BNP gene expression by qRT-PCR
  • BNP protein expression by flow cytometry
  • BNP protein expression by HCA
  • BNP protein secretion by ELISA

Modeling Hypoxia

Myocardial ischemia is a pathological condition characterized by reduced oxygen supply (hypoxia) that can lead to cell death, arrhythmia, organ injury, and death.

Learn More
Print
Description Available Resources

Modeling Hypoxia

Discovery, Disease Modeling

Myocardial ischemia is a pathological condition characterized by reduced oxygen supply (hypoxia) that can lead to cell death, arrhythmia, organ injury, and death. Ironically, returning hypoxic myocardium to normoxic levels exacerbates the pathology (collectively known as myocardial reperfusion injury). CDI’s cardiomyocytes are amenable to hypoxia induction, measurement of hypoxia-induced functional endpoints, and screening for cardioprotective agents.

Modeling Diabetic Cardiomyopathy

Diabetic cardiomyopathy is a complication of type 2 diabetes that results from lifestyle and genetic conditions.

Learn More
Print
Description Available Resources

Modeling Diabetic Cardiomyopathy

Discovery, Disease Modeling

Diabetic cardiomyopathy is a complication of type 2 diabetes that results from lifestyle and genetic conditions. CDI’s cardiomyocytes have been used to develop environmental and patient-specific in vitro models that recapitulate this complex metabolic condition. These models are employed in a phenotypic screening assay resulting in the identification of candidate protective molecules.