Applications

ABCDEFGHIJKLM
NOPQRSTUVWXYZALL

Advanced Cardiomyocyte Cell Culture

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function.

Learn More
Print
Description Available Resources

Advanced Cardiomyocyte Cell Culture

Discovery, Regenerative Medicine, Toxicity

Advanced cell culture techniques including 3D spheroids, micropatterned co-culture, bioengineered and flow-based systems, and bioprinting offer the potential to better mimic in vivo tissue structure and function. CDI’s cardiomyocytes are amenable to these culture techniques as pure cell populations or in co-culture with other cell types, such as CDI’s iCell Endothelial Cells.

  1. Carlson C, Einhorn S, et al. (2013) Applications Development at CDI: Improving Workflows, Pushing Biology, and Enabling Screening. Poster Presentation, Cellular Dynamics User Group Meeting.
  2. Rao C, Prodromakis T, et al. (2013)  The Effect of Microgrooved Culture Substrates on Calcium Cycling of Cardiac Myocytes Derived from Human Induced Pluripotent Stem Cells. Biomaterials 34(10):2399-411.
  3. iCell Cardiomyocytes – iCell Endothelial Cells Co-culture. Contact Technical Support for more information.

High-throughput Screening

Drug failure in the clinic is most often attributed to either unforeseen toxicity or a lack of demonstrated efficacy.

Learn More
Print
Description Available Resources

High-throughput Screening

Discovery

Drug failure in the clinic is most often attributed to either unforeseen toxicity or a lack of demonstrated efficacy. Thus, predictive in vitro models that more accurately reflect in vivo disease states can inform the preclinical processes of drug discovery and development ensuring higher success rate in the eventual clinical setting. CDI’s iCell and MyCell products offer a wide range of innate, engineered, and induced disease models for screening, hit-to-lead, and lead optimization efforts. The cells are amenable to gene modulation and culture in high-density multiwell plates. iCell and MyCell products have been used in high-throughput screens across various disease areas including infectious disease, neurological disorders, diabetes, and cardiomyopathies.

Vascular Tissue Bioengineering

Vascular networks supply organs with oxygen and nutrients, remove waste, and serve generally as the delivery network within the body.

Learn More
Print
Description Available Resources

Vascular Tissue Bioengineering

Discovery, Regenerative Medicine, Toxicity

Vascular networks supply organs with oxygen and nutrients, remove waste, and serve generally as the delivery network within the body. Thus, any bio- or tissue engineering effort should include a vascular framework to support organ function. CDI’s endothelial cells have demonstrated functionality to reform vascular networks in decellularized organs to support de novo organ synthesis as a transplantable tissue for regenerative medicine approaches. In addition, CDI’s endothelial cells have formed complex vascular networks in static- and flow-based bioengineered vascular platforms.

Measuring Vasculogenesis

The ability to modulate vasculogenesis has utility in tissue engineering and repair as well as in oncology therapeutics development aimed at targeting angiogenesis.

Learn More
Print
Description Available Resources

Measuring Vasculogenesis

Discovery, Regenerative Medicine

The ability to modulate vasculogenesis has utility in tissue engineering and repair as well as in oncology therapeutics development aimed at targeting angiogenesis. The processes of endothelial cell migration and invasion and vascular sprouting behavior can be measured using CDI’s endothelial cells using platforms including:

  1. Belair DG, Whisler JA, et al. (2014) Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells. Stem Cell Rev. [Epub ahead of print]
  2. Belair D, Carlson C, et al. (2014) Label-free, Real-time Analysis of Endothelial Cell Morphogenesis Using iPSC-derived Endothelial Cells. Poster Presentation, AACR.

Measuring Vascular Endothelial Cell Barrier Function

The endothelial cell barrier regulates the passage of materials and transit of blood cells into and out of the bloodstream.

Learn More
Print
Description Available Resources

Measuring Vascular Endothelial Cell Barrier Function

Discovery, Toxicity

The endothelial cell barrier regulates the passage of materials and transit of blood cells into and out of the bloodstream. Thus, models of barrier function are relevant for the study of xenobiotic permeability, metastasis, inflammation, and wound healing. Endothelial cells’ barrier function and modulation by agents, such as thrombin, can be measured using impedance platforms (ACEA xCELLigence, Applied BioPhysics ECIS).

  1. Assaying Barrier Function. Cellular Dynamics Application Note.
  2. Assaying Barrier Function: xCELLigence RTCA Cardio System. Cellular Dynamics Application Protocol.

Measuring Vascular Endothelial Cell Proliferation

The regulation of endothelial cell proliferation plays a fundamental role in vascular remodeling and angiogenesis in normal and pathological conditions.

Learn More
Print
Description Available Resources

Measuring Vascular Endothelial Cell Proliferation

Discovery, Regenerative Medicine, Toxicity

The regulation of endothelial cell proliferation plays a fundamental role in vascular remodeling and angiogenesis in normal and pathological conditions. CDI’s endothelial cells exhibit a dose-dependent proliferation response to VEGF that is sensitive to inhibition by tyrphostin, a selective VEGF receptor inhibitor, as measured using the CellTiter-Glo Assay (Promega).

  1. Assaying Cell Proliferation. Cellular Dynamics Application Note.
  2. Belair D, Carlson C, et al. (2014) Label-free, Real-time Analysis of Endothelial Cell Morphogenesis Using iPSC-derived Endothelial Cells. Poster Presentation, AACR.

Genetic Manipulation of Endothelial Cells

The ability to interrogate and monitor gene expression is critical to understanding biological pathways that underlie normal and pathogenic cellular function.

Learn More
Print
Description Available Resources

Genetic Manipulation of Endothelial Cells

Discovery, Regenerative Medicine, Toxicity

The ability to interrogate and monitor gene expression is critical to understanding biological pathways that underlie normal and pathogenic cellular function. CDI has worked to evaluate a wide range of genetic manipulation tools to enable the development of assays using its endothelial cells.