Use of hiPSC-derived Cardiomyocytes for Cardiac Safety Evaluation

Liang Gu, MD, Msc
Sr. Principal Scientist/Lab Head, ADRD-Investigative Toxicology

March 14th, 2018 (SOT Workshop)
Disclaimer

- The speaker is an employee of Leidos Biomedical Research, Inc. (LBRI), a government contractor to operate Frederick National Laboratory for Cancer Research (FNLCR) in support of NIH/NIC initiatives
- No conflicts of interest to disclose
Outlines

- Definition of cardiotoxicity: functional vs. structural

- Use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs):
 - In CiPA initiative as a translational model
 - As high/moderate-throughput assays to screen for both types of cardiotoxicity
 - Cellular impedance (+ biochemical/high content analysis)
 - Ca\(^{2+}\) transit (+ biochemical/high content analysis)
 - In mechanistic studies to investigate on-target cardiotoxicity of trastuzumab (Herceptin®)
 - Model potentiation of ErbB2 inhibition on anthracycline-cardiotoxicity

- Take-home messages
Pathophysiological classification of cardiotoxicity

- **Cardiotoxicity**: “toxicity that affects the heart”

<table>
<thead>
<tr>
<th></th>
<th>Functional</th>
<th>Structural</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>(myocardial destruction)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology</td>
<td>(+) primary</td>
<td>(+) secondary</td>
<td>(+) primary & secondary</td>
</tr>
<tr>
<td>(arrhythmia and/or contractility↓)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset/progression rate</td>
<td>fast, instantaneous/acute (minutes to hours)</td>
<td>delayed onset, slow, subacute/chronic (days to years)</td>
<td>both</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversibility</td>
<td>yes</td>
<td>no</td>
<td>yes/no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanism(s)</td>
<td>ion channels and/or receptors</td>
<td>key components in cell death/survival pathways</td>
<td>both</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapeutic area(s)</td>
<td>dofetilide, sotalol, terfenadine, nilotinib</td>
<td>anthracycline, trastuzumab</td>
<td>sunitinib, dasatinib</td>
</tr>
</tbody>
</table>

*National Cancer Institute NIH. NCI Dictionary of Cancer Terms <www.cancer.gov/dictionary>
hiPSC-CMs as a translational model

Cell-based in vitro models for screening and mechanistic study in drug development:

- **Pros:**
 - Human origin → eliminate concerns on species discrepancy
 - Functional with spontaneous beating → enable comprehensive test
 - Easy for long-term (> 3 months) culture → enable test on chronic effects
 - Easy to create CMs with specific genotype → model diseases

- **Cons:**
 - Fetal-like phenotype → impact on drug responses!!!
 - Mixture of nodal, atrial and ventricular cells → difficult to identify target cell type

“Fit-for-purpose” validation of endpoints is critical for translatability!
Endpoint selection for quantitative functional and structural testing in hiPSC-CMs

Functional
- Electrophysiology:
 - Action potential (AP)
 - Field potential (FP)
- Ca\(^{2+}\) cycling:
 - \([\text{Ca}^{2+}]_i\)
- Force generation
 - Transducer
 - Cell length
 - Movement

Structural
- Cellular morphology
- Membrane permeabilization
 - LDH, cTnI release
 - Nuclear stain
- Apoptosis and cell loss
 - Caspase 3/7, ATP
 - Nucleus count
- Mitochondrial damage
 - Mito membrane potential (JC-10 stain)

Excitation-Contraction Coupling

[Diagram showing the processes of excitation and contraction with various calcium and ion interactions, including action potential (AP), field potential (FP), Ca\(^{2+}\) cycling, force generation, and structural changes such as cellular morphology, membrane permeabilization, apoptosis, and mitochondrial damage.]
Update on hiPSC-CMs as a key component in CiPA initiative

- Comprehensive in Vitro Proarrhythmia Assay (CiPA)
 - ICH S7B and E14 guidelines: hERG inhibition and QT prolongation as a surrogate
 - CiPA goal: focus on “proarrhythmic” propensity with arrhythmia-like events as a predictor

- Four components:

- Work on myocytes:
 - 34 sites participated
 - 28 compounds tested
 - 2 platforms (MEA/VSD) evaluated
 - 2 manuscripts submitted

“These results demonstrate the utility of hiPSC-CMs to detect drug-induced proarrhythmic effects…”

Frederick National Laboratory for Cancer Research
Cellular impedance platform as a screening tool

Workflow

Cardiac myocytes → 96-well E-plate Cardio → xCELLigence RTCA Cardio

- Real-time
- Non-invasive

Technology

- Single Well (side view)
- culture medium
- electron flow
- negative terminal
- well bottom (glass or PET)
- addition of cells
- positive terminal
- impeded electron flow
- Medium only
 - Cell Index=0
- Attached cell No. A
 - Cell Index A
- Attached cell No. B
 - Cell Index b1
 - Contraction
- Attached cell No. B
 - Cell Index b2
 - Relaxation

Readout

Electrical impedance
- Viability (CI)
- Contraction (ΔCI), Rhythm

Biochemical measurement
- Caspase 3/7, ATP, LDH, cTnI

High-content analysis (optical plates)
- Total/dead cell count
- MMP (JC-10 stain)
Validation of Cellular Impedance as a functional endpoint

- Impedance vs. Field Potentials:
 - Signals match with each other

- Impedance, not Field Potential, suppressed by a myosin ATPase inhibitor Blebbistatin

 Impedance waveforms represent contraction of cardiomyocytes!

Guo et al, 2015 CPiCB
Validation of impedance to predict functional and structural cardiotoxicity

E-4031 (functional)

Doxorubicin (structural)

Sunitinib (mixed)

Parameters:

Irregular Beat (IB) ratio = # irregular/total beats to predict proarrhythmic risk

Beat Rate (BR) reduction = Δ% in beat rate corrected by the time-matched vehicle control to predict QT prolongation liability
Validation of model performance to predict proarrhythmic liability

- Receiver operating characteristic (ROC) on ~120 compounds

Parameters to predict

1. Arrhythmia:
 - \(\text{IB}_{20} \): threshold conc. to induce \(\geq 20\% \) arrhythmic beats
 - \(\text{PPS-IB}_{20} \): \(\text{IB}_{20}/\text{Cmax} \)

2. QT prolongation:
 - \(\text{BR}_{20} \): threshold conc. to induce reduction in beat rate by \(\geq 20\% \)
 - \(\text{PPS-BR}_{20} \): \(\text{BR}_{20}/\text{Cmax} \)

Guo et al. 2013, Tox Sci.
Impedance and ATP predict structural cardiotoxicity

Validation with 40 compounds:

Parameter: Ratio of IC_{50}/C_{max}

Sequential measurement of Impedance & ATP at 72 hrs drug exposure

Impedance model is the first-line assay to test for cardiac liability
Ca^{2+} transit platform as a screening tool

<table>
<thead>
<tr>
<th>Cells plated</th>
<th>Replated</th>
<th>Functional Assays for Ca^{2+} transit</th>
<th>Structural DNA stain, ATP, Caspase 3/7, JC10, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>1 week</td>
<td>30 min</td>
<td>72 hrs</td>
</tr>
</tbody>
</table>

- Readout with Tecan plate reader
- Imaging with IN-Cell Analyzer (HCA)
- Structural analysis
- Functional testing
- DNA dye JC-10 live-stain
- Caspase 3/7 ATP
- Temperature & CO2 control

Equipment:
- 6-well plate
- 384-well optic plate
- Nikon Eclipse Ti Fluorescence Microscope
- Filter plate reader

Frederick National Laboratory for Cancer Research
Imaging \(\text{Ca}^{2+} \) transits

1x objective lens

20x objective lens

A \(\text{Ca}^{2+} \) transient trace taken from one well at 1x:

![Image of green cells with graph]

Sampling at 51 fps

hiPSC-CMs from Stanford Cardiovascular Institute (SCVI) Biobank (Dr. Joseph Wu)
Multi-parameter analysis with CYBERnano i-Cardio software:

Ca^{2+} transit duration (CTD) as a surrogate of action potentiation duration (APD)

Beat rate: number of Ca^{2+} transit peaks/minute
[Ca^{2+}] baseline: Cal 520 intensity prior to a transit
[Ca^{2+}] amplitude: Cal 520 intensity between baseline and peak
Peak-Peak Interval (PPI): time between two transit peaks
[Ca^{2+}] rising rate (RR): the rate of Cal 520 intensity rising from 10 to 70% of peak
[Ca^{2+}] falling rate (FR): the rate of Cal 520 intensity falling from 70 to 10% of peak

Inter-Peak Interval (IPI): time between two transit peaks
Ca^{2+} transit duration 30 (CTD30): duration at 30% level from peak
Ca^{2+} transit duration 90 (CTD90): duration at 10% level from peak
Corrected CTD30: corrected by beat rate = CTD30(n)/IPI(n-1)
Corrected CTD90: corrected by beat rate = CTD90(n)/IPI(n-1)
Triangulation index: = CTD90c/CTD30c or Beat-to-beat variability
Ca^{2+} transit predicts proarrhythmic liability

Representative responses to hERG inhibition at 30 min post-dose

- **Pre-dose**
- **CTD* prolongation + ↓ beat rate**
- **CTD prolongation + EADs**
- **EAD**
- **Tachycardia**
- **Fibrillation**
- **Beat arrest**

* CTD, Ca^{2+} transit duration; **EADs, early-afterdepolarization-like events

Frederick National Laboratory for Cancer Research
Nuclear stain detects cell death (membrane permeabilization)

Representative responses to structural cardiotoxicant at 72 hours post-dose

A 0.1% DMSO
B Doxorubicin 3μM

![Images](A.png B.png)

C

![Graph](C.png)

DAPI: permeable; **DRAQ7**: impermeable

Ca²⁺ transit model was used to determine MOA and therapeutic index of compounds with anticancer activity but interruption of Ca²⁺ cycling

Frederick National Laboratory for Cancer Research
The double-edged sword of ErbB2 inhibitor Trastuzumab (Herceptin®):

The Good (↑ Survival rate)

The Bad (↑ Heart failure cardiomyopathy)

Pre-clinical and clinical safety evaluation failed to predict cardiotoxicity at this level of severity!

How can we improve strategy to prevent the next “trastuzumab”?
Mechanism of trastuzumab liability: on-target toxicity

- HER2/ErbB2 expressed in Tumor Cell & Cardiomyocytes:

 Trastuzumab

 HER2/ErbB2(+) Tumor

 HER2/ErbB2 SIGNALING: NO LIGAND

 ErbB2 agonist: Neuregulin-1β (NRG)

 CARDIAC ErbB SIGNALING: LIGAND-INDUCED

Are hiPSC-CMs capable of modeling cardiotoxicity observed in the clinical?
ErbB2 is present and functional in hiPSC-CMs

Expression

- **A**
 - WES electropherogram showing ErbB2 and GAPDH bands for cardiomyocytes and H441 cells.

- **B**
 - WES electropherogram showing ErbB2 and GAPDH bands for cardiomyocytes and H441 cells.

- **C**
 - Area normalized to GAPDH for ERGFR, ErbB2, ErbB4, ErbB3, and ErbB3.

Knockdown

- **A**
 - Control siRNA and ErbB2 siRNA electropherograms for cardiomyocytes and H441 cells.

- **B**
 - Area normalized to GAPDH for Control siRNA and ErbB2 siRNA.

Functional

- **C**
 - Electropherogram showing pAKT levels with 0.01% DMSO, 20 ng/mL NRG, Lapatinib + NRG, and Trastuzumab + NRG.
Model modulation of Doxorubicin (Dox)-toxicity by ErbB2 signaling

Mean ± SE (n=3-6 wells); at 1μM (Dox, Trastuzumab) or at 100 ng/mL (NRG); *, # p < 0.05 compared to vehicle or Dox

Eldridge et al., Tox Sci 2014; Guo et al. CPiCB 2015
Model modulation of Doxorubicin (Dox)-toxicity by ErbB2 signaling

Nucleus morphology

Guo et al. CPiCB 2015

Apoptosis

Mean ± SE (n=3-6 wells); at 1μM (Dox, Trastuzumab) or at 100 ng/mL (NRG); *, # p < 0.05 compared to vehicle or Dox
Take-home message:

- hiPSC-CMs are a useful translational in vitro model system for cardiac safety evaluation
- Multiple platforms are available for assessing both functional and structural cardiotoxicity using screening and mechanistic approaches
- “Fit-for-purpose” qualification of model system is critical for translatability
- As demonstrated by our work with ErbB2 inhibitor trastuzumab, hiPSC-CMs can be a valuable model in chemotherapeutic development to assess on-target cardiac liability, since many of new anticancer targets play an important role in maintaining myocardial survival and functional integrity
Acknowledgements:

NIH/NCI
Sandy Eldridge
Myrtle Davis
Jerry Collins

Roche Nutley
Luke Coyle
Rory Abrams
Ray Kemper
Eric Chiao
Kyle Kolaja

Univ. Stanford
Yan Zhuge
Joseph C. Wu

Univ. Lorraine
Levy Bastista
Thierry Bastogne

FNLCR/LBR
Mike Furniss
Jodie Mussio
John Hamre
Ralph Parchment

Disclaimers: This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this presentation does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.
Thank you!